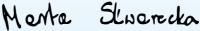
To whom it may concern,

The GeneMe considering the latest information on the mutation of the SARS-CoV-2 genome and its influence on the results of RT-PCR assays. We hereby present our Research and Development report the objective of which was to determine if the recently observed mutations in the SARS-CoV-2 affect the loss of specificity of the SAVD RT-PCR test. This research and development report summarizes our findings regarding the influence of ORF1abgene mutations in SARS-CoV-2 on SAVD primers hybridization. For this purpose, bioinformatic analysis of the mutated sequences of the coronavirus ORF1ab-gene was performed to assess if the point mutation or deletions lay in the hybridization region of SAVD RT-PCR primers.

The SAVD by GeneMe SARS-CoV-2 Direct Rapid Detection Kit is designed for the in vitro identification of the new coronavirus SARS-CoV-2, in a single reaction. The presence of an innovative and patented Pwo polymerase and specific primers in the kit has enabled the creation of a highly specific and sensitive SARS-CoV-2 rapid detection kit. The specifically designed primers are 100% compatible with the SARS-CoV-2 genomic RNA sequence of gene ORF1ab recommended by WHO and deposited in the NCBI database. Amplification of the targeted nucleic acids is observed by an increase of fluorescence signal during the reaction.

We, signed below, can definitively state that SAVD RT-PCR assay's ability to detect SARS-CoV-2 remains at the highest level regardless of these new mutations.


The GeneMe constantly cooperates with diagnostic laboratories in Poland and abroad (UK, Norway, Uganda, Mexico), regularly validating the test on clinical trials - swabs and saliva samples to make sure that the SAVD test maintains its sensitivity and specificity to the current SARS-Co-2 virus strains.


Yours sincerely,

Dr Sabina Żołędowska, CQO

Sabre Zoiplausle

Dr Eng. Marta Skwarecka, Head of Research and Development Department

Research and Development

NAME: Marta Skwarecka, Head of RD GeneMe

DATE: 27.01.2022

PROPOSED PRODUCT: SAVD

REVISION: 2.0

1.Title

Detection of different variants of SARS-CoV-2 virus by SAVD test.

2. Purpose and scope

The aim of the study is to check the universality of the SAVD test for the identification of known variants of the SARS-CoV-2 virus. The most popular variants of the mutant SARS-CoV-2 virus from Alfa to Omicron were analyzed in sillico. The most popular of them are: B.1.1.7 United Kingdom, B.1.351 South Africa (also known as S.501Y.V2), B.1.1.28 Brazil P1, P2, B .1.617 India, B.1.429/ B.1.427 California variant (also known as epsilon variant), Vietnamese variant (Delta variant B.1.617.2 with additional mutations) and Omicron variant B.1.1.529.

3. Method

Date of the test:	27.01.2022				
Place of the test:	GeneMe, ul. Kampinoska 25, 80-180 Gdansk, Poland				
Test conditions	Тетр:				
(temperature, humidity):	Humidity:				
The person performing the	Marta Skwarecka				
tests:					
LOT of reagents analyzed:	LOT number Trade name Expiry date				
	-				
	-				
	-				
LOT of reference reagents and	LOT number	Trade name	Expiry date		
trade name:	-				
	-				
	-				
	-				

Description of the tested method:

The study consisted of:

- 1. Finding in the analyzed variants of the SARS-CoV-2 virus the resulting mutations in the ORF1ab gene relative to the native strain and locating them in the genomic RNA of the virus.
- 2. Assigning individual mutations to appropriate nucleotides.

- 3. Comparison of the location of the mutated nucleotides with the location of the ORF1ab gene fragment, which is the target of the SAVD test.
- 4. Confirmation or exclusion of the effect of the mutation on the SAVD test identification capabilities.

4. Tested samples

Sample number	Name	Supplier	Producer (as commercial material)	Concentration (as commercial material)
1.	n/a	n/a	n/a	n/a
2.	n/a	n/a	n/a	n/a

5. Results

Table 1 shows the popular variants of the SARS-CoV-2 virus along with the changed nucleotides and compared with the target sequence of the SAVD test.

Table 1. Mutations in the ORF1ab gene of popular variants of the SARS-CoV-2 virus and their impact on the possibility of identification with the SAVD test.

Vitus variant	Country of origin (emergence)	Amino-acid mutation	Nucleotide mutation	Location of mismatch (5'-3') in the SAVD Plus test	Detection with the SAVD test
Reference Strain: Wuhan-Hu-1, nCoV	China	-	-	absence	Yes
		T1001I	C3267T	absence	
	UK	A1708D	C5388A	absence	Yes
Alpha		I2230T	T6954C	absence	
(B.1.1.7)		SGF 3675-3677	11288-	absence	
		deletion	11296 deletion		
Beta		Thr265I	C1059T	absence	
(B.1.351,S.501Y.V2)	South Africa	L1655Asn	G5230T	absence	Yes
(0.1.331,3.3011.72)		L3353R	A10323AG	absence	
Gamma	Brazil	synonymous mutation	Т733С	absence	Yes

(B.1.1.28.1, P1)		synonymous mutation	С2749Т	absence	
		S1188L	C3828T	absence	
		L1795Q	A5648C	absence	
		synonymous mutation	A6319G	absence	
		synonymous mutation	A6613G	absence	
		synonymous mutation	C12778T	absence	
		synonymous mutation	С13860Т	absence	
		E1264N	G17259T	absence	
		synonymous mutation	С100Т	absence	
		L3468V	T10667G	absence	
		synonymous mutation	C11824T	absence	
		L3930F	C12053T	absence	
		P4715L	14408- 14410	absence	
Delta (B.1.617.2)	India	P5401L	16466- 16468	absence	Yes
		G5063S	20515- 20517	absence	
		synonymous mutation	C3037T	absence	
Delta+		synonymous mutation	C3457T	absence	
(B.1.617.2+)	Vietnamese	T1567I	C4965T	absence	Yes
		synonymous mutation	G8491A	absence	
		T3646A	A11201G	absence	

		P4715L	C14408T	absence	
		synonymous mutation	G14772A	absence	
		synonymous mutation	C16134T	absence	
		G5530C	G16852T	absence	
		M5753I	G17523T	absence	
		L6711R	A20396G	absence	
		S6713A	T20401G	absence	
		T1001I	C3267T	absence	
		A1708D	C5388A	absence	
		I2230T	T6954C	absence	
		SGF 3675-3677 deletion	11287- 11295 deletion	absence	
		P4715L	14407- 14409	absence	
		P5401L	16465- 16467	absence	
		G5063S	15451- 15453	absence	
		K856R	2830-2832	absence	
		SL2083-2084I	6511-6516	absence	
		A2710T	8392-8394	absence	
Omicron BA.1 (B.1.1.529)	DA 4	T3255I	10027- 10029	absence	
	South Africa	Р3395Н	10447- 10449	absence	Yes
		3674-3676 deletion	33056- 11292	absence	
		13758V	11536- 11538	absence	

		P4715L	14407- 14409	absence	
		15967V	18163- 18165	absence	
<i>Omicron BA.2</i> (BA.2)	South Africa	-	-	absence	Yes
		T265I	1057-1059	absence	
		S3158T	9736-9738	absence	
Epsilon	California (USA)	14205V	12877- 1279	absence	Yes
(B.1.429, B.1.427)	(03A)	P314L	1204-1206	absence	
		P976L	3190-3192	absence	
		D1183T	3811-3813	absence	
Zeta					
(B.1.1.28.2, P2)	Brazil	-	-	absence	Yes
Eta (B.1.525)	Worldwide	L4715F	14407- 14409	absence	Yes
		L3201P	9865-9867	absence	
Theta		D3681E	11305- 11307	absence	
(B.1.1.28.3, P3)	Philippines	L3930F	12052- 12054	absence	Yes
		P4715L	14407- 14409	absence	
lota (B.1.526)	USA	del3675-3677	11287- 11295	absence	Yes
Kanna		synonymous mutation	C3037T	absence	
Карра (В.1.617.1)	India	synonymous mutation	C3457T	absence	Yes
		T1567I	C4965T	absence	

		synonymous mutation	G8491A	absence	
		T3646A	A11201G	absence	
		P4715L	C14408T	absence	
		synonymous mutation	G14772A	absence	
		synonymous mutation	C16134T	absence	
		G5530C	G16852T	absence	
		M5753I	G17523T	absence	
		K6711R	A20396G	absence	
		S6713A	T20401G	absence	
Lambda (B.1.1.1.C37)	Peru	-	-	absence	Yes

Link to the data repository kept in the cloud: --

6. Conclusions

The presented analysis shows that none of the mutations occurring in the variants of the SARS-CoV-2 virus, i.e., Alpha, Beta, Gamma, Delta, Omicron, Epsilon, Zeta, Theta, Iota, Kappa and Lambda did affect the effectiveness of the virus detection with the SAVD test. All analyzed variants are fully identifiable with the SAVD test.

7. References

- 1. Lopez-Rincon, C. A. Perez-Romero, A. Tonda, L. Mendoza-Maldonado, E. Claassen, J. Garssen, A. D. Kraneveld, Design of Specific Primer Sets for the Detection of B.1.1.7, B.1.351 and P.1 SARS-CoV-2 Variants using Deep Learning, bioRxiv January 21, 2021.
- 2. T. Tapp, First Cases of Brazilian And More Contagious South African Covid-19 Variants Detected in Los Angeles; U.K. Variant Surges, April 7, 2021
- 3. F. Naveca, V. Nascimento, V. Souza et al. Phylogenetic relationship of SARS-CoV-2 sequences from Amazonas with emerging Brazilian variants harboring mutations E484K and N501Y in the Spike protein, 9 Feb 2021
- A. M. Voloch et al., Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil, J Virol, 1 March 2021
- 4. N. R. Faria, I. Morales Claro, D. Candido et al., Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings, 12 January 2021
- 5. SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies, bioRxiv 9 May 2021
- 6. Pragya Dhruv Yadav et al., SARS CoV-2 variant B.1.617.1 is highly pathogenic in hamsters than B.1 variant, bioRxiv 5 May 2021.
- 7. Markus Hoffmann et al., SARS-CoV-2 variant B.1.617 is resistant to Bamlanivimab and evades antibodies induced by infection and vaccination, bioRxiv 5 May 2021.
- Vipul Kumar et al., Possible link between higher transmissibility of B.1.617 and B.1.1.7 variants of SARS-CoV-2 and increased structural stability of its spike protein and hACE2 affinity, bioRxiv 29 April 2021

- 9. Sarah Cherian et al., Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India, bioRxiv 24 April 2021
- 10. Pragya Yadav et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees, bioRxiv 23 April 2021
- 11. https://outbreak.info/situation-reports?pango=B.1.617
- 12. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-emerging-variants.html
- 13. Jamie Lopez Bernal et al., Effectiveness of COVID-19 vaccines against the B.1.617.2 variant, London 2021
- 14. https://www.france24.com/en/asia-pacific/20210603-who-rules-out-new-hybrid-covid-19-variant-in-vietnam
- 15. https://www.reuters.com/world/asia-pacific/vietnam-detects-hybrid-indian-uk-covid-19-variant-2021-05-29/?utm_medium=Social&utm_source=Twitter
- 16. https://indianexpress.com/article/explained/covid-delta-variant-coronavirus-cases-7344758/
- 17. https://www.republicworld.com/world-news/global-event-news/covid-19-know-about-delta-k417nmutant-which-has-been-spotted-about-90-times-worldwide.html
- 18. https://outbreak.info/situation-reports?pango=B.1.617.2
- 19. https://outbreak.info/situation-reports?pango=B.1.617
- 20. https://outbreak.info/situation-reports?pango=B.1.1.7
- 21. https://cov-lineages.org/lineage.html?lineage=B.1.427
- 22. https://cov-lineages.org/lineage.html?lineage=B.1.429
- 23. https://viralzone.expasy.org/9556
- 24. Implications of the emergence and spread of the SARS-CoV-2 B.1.1. 529 variant of concern (Omicron) for the EU/EEA, THREAT ASSESSMENT BRIEF, 26.11.2021
- 25. https://cov-lineages.org/lineage.html?lineage=B.1.1.529
- 26. https://viralzone.expasy.org/9556

Approved for external release by Sabina Żołędowska, CQO

Date of approval: 27.01.2022

signature: Sobra Zoiplausle

